Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Diabetes Investig ; 14(4): 535-547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36756695

RESUMO

AIMS: Diabetes mellitus is a common chronic disease of glucose metabolism. Endothelial dysfunction is an early event in diabetes complicated by cardiovascular disease. This study aimed to reveal the expression of BASP1 and its biological roles in endothelial cell dysfunction in diabetes complicated by cardiovascular disease. MATERIALS AND METHODS: By analyzing the databases related to diabetes complicated with coronary heart disease, BASP1 was screened out as an upregulated gene. Human umbilical vein endothelial cells (HUVECs) and primary mouse aortic endothelial cells were treated with high glucose to establish cell models of diabetes-related endothelial dysfunction, and the expression changes of BASP1 were verified by RT-qPCR, western blot, and immunofluorescence. BASP1 was silenced or overexpressed by siRNA or overexpression plasmid, and its effects on cell migration, apoptosis, tube formation, inflammatory response, and ROS were detected. The possible signaling pathway of BASP1 was found and the mechanism of BASP1 on promoting the progression of endothelial dysfunction was explored using the EGFR inhibitor, gefitinib. RESULTS: Bioinformatics analysis indicated that the expression of BASP1 in patients with diabetes mellitus and concomitant coronary heart disease was increased. High glucose induced the upregulation of BASP1 expression in endothelial cells, and showed a time-dependent relationship. Silencing of BASP1 alleviated the damage of high glucose to endothelial cells. BASP1 regulated EGFR positively. The promoting effect of BASP1 on endothelial cell apoptosis may be achieved by regulating the EGFR pathway. CONCLUSION: BASP1 promotes endothelial cell injury induced by high glucose in patients with diabetes, which may be activated by activating the EGFR pathway.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Animais , Humanos , Camundongos , Apoptose , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Glucose/farmacologia , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso , Proteínas Repressoras/metabolismo , Proteínas Repressoras/farmacologia , Transdução de Sinais
2.
Autoimmunity ; 55(8): 587-596, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35993279

RESUMO

Acute lung injury (ALI) is considered as a severe respiratory disease with aggravated inflammatory responses. Krüppel-like factor 9 (KLF9), a member of KLF family, has been reported to be involved in inflammatory disorders. However, the effect of KLF9 in ALI has not been elucidated. Here the present study was to clarify the role of KLF9 and its mechanism in ALI. The ALI in vitro model was established with lipopolysaccharide (LPS)-treated RAW264.7 cells. Mice were injected with LPS to conduct an ALI in vivo model. The expression of KLF9 and gasdermin D (GSDMD) was examined using quantitative reverse transcription-PCR, haematoxylin-eosin/immunohistochemistry staining and western blot assays. Enzyme-linked immunosorbent assay was employed to detect the levels of inflammatory cytokines. JASPAR database was used to predict the recognition motif of KLF9, and the relationship between KLF9 and GSDMD was determined by luciferase reporter assay and chromatin immunoprecipitation analysis. The number of neutrophils in bronchoalveolar lavage fluid as well as the wet/dry weight ratio was caculated. The results showed that The expression of KLF9 in lung was significantly increased in LPS-stimulated mice. Moreover, KLF9 knockout relieved the lung injury in ALI mice. GSDMD is one of targets genes of the transcription factor KLF9. KLF9 knockout induced a decreased expression of GSDMD in LPS-treated mice. Furthermore, in RAW264.7 cells after LPS administration, KLF9 knockdown reduced the levels of inflammatory factors and suppressed the expression of GSDMD. In summarise, these findings exhibited that KLF9 knockout could mitigate the lung injury and inflammatory responses in ALI mice by directly regulating GSDMD.


Assuntos
Lesão Pulmonar Aguda , Fatores de Transcrição Kruppel-Like , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Citocinas/metabolismo , Regulação para Baixo , Inflamação/genética , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Células RAW 264.7
3.
BMC Bioinformatics ; 20(Suppl 25): 697, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874621

RESUMO

BACKGROUND: Along with the development of precision medicine, individual heterogeneity is attracting more and more attentions in clinical research and application. Although the biomolecular reaction seems to be some various when different individuals suffer a same disease (e.g. virus infection), the final pathogen outcomes of individuals always can be mainly described by two categories in clinics, i.e. symptomatic and asymptomatic. Thus, it is still a great challenge to characterize the individual specific intrinsic regulatory convergence during dynamic gene regulation and expression. Except for individual heterogeneity, the sampling time also increase the expression diversity, so that, the capture of similar steady biological state is a key to characterize individual dynamic biological processes. RESULTS: Assuming the similar biological functions (e.g. pathways) should be suitable to detect consistent functions rather than chaotic genes, we design and implement a new computational framework (ABP: Attractor analysis of Boolean network of Pathway). ABP aims to identify the dynamic phenotype associated pathways in a state-transition manner, using the network attractor to model and quantify the steady pathway states characterizing the final steady biological sate of individuals (e.g. normal or disease). By analyzing multiple temporal gene expression datasets of virus infections, ABP has shown its effectiveness on identifying key pathways associated with phenotype change; inferring the consensus functional cascade among key pathways; and grouping pathway activity states corresponding to disease states. CONCLUSIONS: Collectively, ABP can detect key pathways and infer their consensus functional cascade during dynamical process (e.g. virus infection), and can also categorize individuals with disease state well, which is helpful for disease classification and prediction.


Assuntos
Regulação da Expressão Gênica , Humanos , Fenótipo , Medicina de Precisão
4.
J Vestib Res ; 29(2-3): 131-136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31356223

RESUMO

BACKGROUND: Persistent postural-perceptual dizziness (PPPD) is a chronic dizziness, its pathogenesis is unknown by now. OBJECTIVE: To study the relationship between the DRD2 gene TaqIA polymorphisms and PPPD, and further to explore the molecular mechanism underlying this disease. METHODS: 43 patients diagnosed with PPPD and 45 randomly selected cases (matched by age and sex) were included in the study and control group, respectively. DRD2 gene TaqIA polymorphisms were detected in all participants by polymerase chain reaction (PCR)combined with the restriction fragment length polymorphism (RFLP) method. RESULTS: In the study group, frequencies of the A1 and A2 TaqIA alleles (65.1% and 34.9%, respectively) were significantly different to those in the control group (46.7% and 53.3%, respectively; P < 0.05). The allele frequency in the study group for the A1/A1 genotype was 34.9%, for A1/A2 was 60.5%, and for A2/A2 was 4.6%, all of which were significantly higher than the control group (24.4%, 44.5%. and 31.1%, respectively; P < 0.01). CONCLUSIONS: Our findings indicate that the DRD2 TaqIA A1 allele is possibly the susceptibility polymorphism for PPPD, and that the A2/A2 genotype has a potentially protective role for PPPD. However, larger independent studies are required for further validation.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Tontura/genética , Polimorfismo de Fragmento de Restrição , Receptores de Dopamina D2/genética , Vertigem/genética , Adulto , Idoso , Estudos de Casos e Controles , Tontura/epidemiologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Vertigem/epidemiologia , Adulto Jovem
5.
Front Genet ; 10: 252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972105

RESUMO

Type 2 diabetes (T2D) is known as a disease caused by gene alterations characterized by insulin resistance, thus the insulin-responsive tissues are of great interest for T2D study. It's of great relevance to systematically investigate commonalities and specificities of T2D among those tissues. Here we establish a multi-level comparative framework across three insulin target tissues (white adipose, skeletal muscle, and liver) to provide a better understanding of T2D. Starting from the ranks of gene expression, we constructed the 'disease network' through detecting diverse interactions to provide a well-characterization for disease affected tissues. Then, we applied random walk with restart algorithm to the disease network to prioritize its nodes and edges according to their association with T2D. Finally, we identified a merged core module by combining the clustering coefficient and Jaccard index, which can provide elaborate and visible illumination of the common and specific features for different tissues at network level. Taken together, our network-, gene-, and module-level characterization across different tissues of T2D hold the promise to provide a broader and deeper understanding for T2D mechanism.

6.
Theranostics ; 8(11): 3111-3125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896306

RESUMO

Low water solubility and poor selectivity are two fundamental limitations that compromise applications of near-infrared (NIR) fluorescent probes. Methods: Here, a simple strategy that can resolve these problems simultaneously was developed by using a novel hybrid protein named RGD-HFBI that is produced by fusion of hydrophobin HFBI and arginine-glycine-aspartic acid (RGD) peptide. This unique hybrid protein inherits self-assembly and targeting functions from HFBI and RGD peptide respectively. Results: Boron-dipyrromethene (BODIPY) used as a model NIR dye can be efficiently dispersed in the RGD-HFBI solution by simple mixing and sonication for 30 min. The data shows that self-assembled RGD-HFBI forms a protein nanocage by using the BODIPY as the assembly template. Cell uptake assay proves that RGD-HFBI/BODIPY can efficiently stain αvß3 integrin-positive cancer cells. Finally, in vivo affinity tests fully demonstrate that the soluble RGD-HFBI/BODIPY complex selectively targets and labels tumor sites of tumor-bearing mice due to the high selectivity of the RGD peptide. Conclusion: Our one-step strategy using dual-functional RGD-HFBI opens a novel route to generate soluble and targeted NIR fluorescent dyes in a very simple and efficient way and may be developed as a general strategy to broaden their applications.


Assuntos
Antineoplásicos/metabolismo , Corantes Fluorescentes/metabolismo , Imidazóis/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias/diagnóstico por imagem , Oligopeptídeos/metabolismo , Animais , Antineoplásicos/química , Boro/química , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Imidazóis/química , Raios Infravermelhos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Nanocápsulas , Oligopeptídeos/química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Proteínas Recombinantes de Fusão , Solubilidade
7.
RSC Adv ; 8(38): 21472-21479, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539954

RESUMO

A novel fluorescent probe was constructed by the self-assembly of monosubstituted BODIPY and a novel targeted hydrophobin named hereafter as HFBI-RGD. Optical measurements and theoretical calculations confirmed that the spectral properties of the probe were greatly influenced by the BODIPY structure, the appropriate volume of BODIPY and the cavity of HFBI-RGD. The experiments in vivo and ex vivo demonstrated that the probe had excellent ability for tumor labelling.

8.
RSC Adv ; 8(36): 20087-20094, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35541689

RESUMO

Fluorescent probes have been demonstrated to be promising candidates as biomarkers and biological carriers. Our study focuses on the development of a novel amphiphilic fluorescent probe with good photostability, high water solubility, excellent specificity and promising loading capability for tumor diagnosis and treatment. At first, BODIPY dye and O-carboxymethyl chitosan were prepared via a chemical reaction. Then, the prepared BODIPY dye and cRGD were bonded to O-carboxymethyl chitosan successively via an acylation reaction. Finally, we obtained the desired amphiphilic fluorescent probe: BODIPY-O-CMC-cRGD, which was based on the fluorescence resonance energy transfer (FRET) principle for selective visualization of tumors in vitro. Through a series of experiments, we found that this fluorescent probe possessed better fluorescence characteristics and tumor targeting properties. Simultaneously, by self-assembly, the amphiphilic probe encapsulated the other flexible structure of BODIPY2 and the rigid structure of porphyrin, which formed distinct nanoparticles with different particle sizes. Hence, we could observe different phagocytosis processes of the two nanoparticles in the tumor cells via the fluorescence of dyes by confocal laser scanning microscopy. Therefore, the results suggest that the fluorescent probe has advantages in tumor detection, and the constructed tumor-specific nanoparticles show high clinical potential to be utilized not only in visual and precise diagnosis but also in excellent drug delivery for tumor treatment. Henceforth, we will prepare new targeted and visualized pharmaceuticals by replacing BODIPY2 and porphyrin with antineoplastic drugs for future tumor treatment.

9.
Med Sci Monit ; 22: 5101-5108, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-28012286

RESUMO

BACKGROUND Although pituitary adenoma is a malignant tumor, it can present as invasive growth in some cases. MicroRNA (miR)-26a has been found to be abnormally highly expressed in pituitary adenoma, indicating possible involvement in pathogenesis. As a known target gene of miR-26a, PLAG1 has abnormally low expression in pituitary adenoma. The correlation between miR-26a or PLAG1 expressional abnormality and occurrence of pituitary adenoma is still unknown, as is its association with invasiveness of pituitary adenoma. MATERIAL AND METHODS Pituitary adenoma tissues, including both invasive and non-invasive subtypes, were collected from our Neurosurgery Department, in parallel with normal pituitary tissues from postmortem autopsy. qRT-PCR was used to detect mRNA expression of miR-26a and PLAG1, while Western blotting was used to test PLAG1 protein expression. The correlation between miR-26a and PLAG1, and with pathological features, were analyzed. ROC analysis revealed the utility of miR-26a and PLAG1 in differential diagnosis of invasive/non-invasive pituitary tumors and in analyzing their effects on patient prognosis. RESULTS MiR-26a was remarkably upregulated in pituitary tumors, while PLAG1 was downregulated, especially in invasive pituitary tumors. miR-26a and PLAG1 had higher diagnostic values for differentiating between invasive and non-invasive pituitary tumors (AUC=0.889 and 0.818, respectively). Those patients with miR-26 overexpression and PLAG1 downregulation had unfavorable prognosis. miR-26 and PLAG1 are independent factors affecting patient diagnosis. CONCLUSIONS MiR-26a can facilitate occurrence of pituitary tumor and invasiveness, probably via inhibiting PLAG1 expression.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Adulto , Idoso , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Hipofisárias/diagnóstico , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Curva ROC , Análise de Regressão , Fatores de Risco , Análise de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...